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Information content of signals using correlation function expansions of the entropy
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Formally exact series expressions are derived for the entropy~information content! of a time series or signal
by making systematic expansions for the higher-order correlation functions using generalized Kirkwood and
Markov superpositions. Termination of the series after two or three terms provides tractable and accurate
approximations for calculating the entropy. Signals generated by a Gaussian random process are simulated
using Lorentzian and Gaussian spectral densities~exponential and Gaussian covariance functions! and the
entropy is calculated as a function of the correlation length. The validity of the truncated Kirkwood expansion
is restricted to weakly correlated signals, whereas the truncated Markov expansion is uniformly accurate; the
leading two terms yield the entropy exactly in the limits of both weak and strong correlations. The concept of
entropy for a continuous signal is explored in detail and it is shown that it depends upon the level of
digitization and the frequency of sampling. The limiting forms are analyzed for a continuous signal with
exponentially decaying covariance, for which explicit results can be obtained. Explicit results are also obtained
for the binary discrete case that is isomorphic to the Ising spin lattice model.@S1063-651X~97!09210-6#

PACS number~s!: 05.50.1q, 89.70.1c, 02.50.Ga, 02.50.Cw
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INTRODUCTION

A quantitative analysis of the communication or stora
of data necessarily involves measuring the amount of in
mation involved. Compression, which in general repla
frequently occurring data strings by shorter code strin
ideally entails no loss of information and hence the e
ciency and limitation of the process may be gauged by m
suring the latter. It was Shannon@1# who formulated the
mathematical theory of communication and founded it up
a particular measure of information that is closely connec
with the thermodynamic quantity entropy; both measure
der and predictability. Shannon’s formula already occur
in Gibbs’s treatment of statistical mechanics and even ea
the particular example given by Boltzmann had provided
microscopic basis for thermodynamics. The equivalence
information and entropy is epitomized in Jaynes
maximum-entropy formulation of statistics and statistic
mechanics@2#.

We formally consider a signal to be a sequence ofN
symbols that come inL types. For a continuous signal this
the result of sampling atN nodes and digitizing intoL levels.
Hence there areLN possible distinct signals and we suppo
that the probability of each is̀ i . That is, we imagine the
signal to be drawn from an ensemble of similar signals w
certain common characteristics, each signal in the ensem
being replicated according to the distributioǹi . Shannon
defined the entropy of a signal asS52( i` i ln`i and the
entropy per node ass5S/N.

As in statistical mechanics, this formal definition is
limited practical use since for largeN the number of possible
distinct signals is astronomical and collecting statistics
each one rapidly becomes prohibitive. As an alternat
Shannon provided a prescriptive formula that uses the p
561063-651X/97/56~4!/4052~16!/$10.00
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abilities of the subsequences of symbols that appear
given signal. That is, from a frequency histogram of the s
nal, one calculates̀ i

(n) for each of theLn possible subse-
quences ofn consecutive symbols. This is the probabili
that an arbitrarily chosen run ofn symbols of the signal will
be the i th subsequence. The signal has entropy per n
s52 limn→`n21( i` i

(n)ln`i
(n) .

Whether or not it is actually feasible to use this recipe
calculate the information content of a particular signal d
pends upon the degree to which the signal is correlated.
almost random signals, in which successive symbols are
most uncorrelated, the formula rapidly converges. But
highly correlated signals, in which successive symbols
predetermined and can be accurately predicted, large clu
sizes are required before the entropy expression conver
In this case the number of possible clusters can actually
ceed the length of the signal and the statistics are insuffic
to evaluate the entropy.

A meaningful signal is intermediate between a complet
regular signal, which has zero entropy, and a purely rand
one,` i51/LN, in which case the entropy is given by Boltz
mann’s expressionS5NlnL. Information reflects correla-
tions between successive symbols of a signal, which in t
are a manifestation of the redundancy of the language
general, for meaningful natural communicationS<NlnL. It
is these correlations that make compression and decryp
feasible. A signal encoded for brevity removes this redu
dancy and conveys the same amount of information w
fewer symbols: The optimally abbreviated signal would
of length N 5S/ lnL<N ~i.e., for the number of encode
symbols actually sent, it would appear to have Boltzman
maximum entropy!.

The problem with estimating the entropy from the pro
4052 © 1997 The American Physical Society
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56 4053INFORMATION CONTENT OF SIGNALS USING . . .
ability of the occurrence of subsequences is that it treats e
subsequence as independent. It is not until the length of
subsequences exceeds the correlation length of the s
that this becomes a good approximation. As discussed ab
this limits its usefulness to weakly correlated signals, wh
unfortunately are those that have the least potential for c
pression. What is desirable is a way of calculating the inf
mation entropy that includes successively higher-order c
relations in a systematic fashion.

In this paper we explore formally exact expansions for
information entropy in terms of correlation functions. Sim
lar expansions are well known in liquid-state statistical m
chanics, and here we show that they can be developed
information theory applications. We show that in some ca
the expansions are rapidly converging and that it is feas
to calculate the first few terms. We test the expansions
Gaussian random signals and show that the particular M
kov expansion that we develop works well for both uncor
lated and highly correlated signals.

In setting out the paper we have deferred the derivation
the entropy expansions until after a discussion of the gen
tion of a correlated random signal, which immediately fo
lows. In Sec. I we also discuss the two-state leveling that
used and the simulation method. In Sec. II we derive exp
sions for the entropy from a Kirkwood and from a Marko
superposition formula. We discuss these expansions in
limits of extreme correlations and we test them against
simulation results for exponential and for Gaussian cov
ance functions. Section III is concerned with the entropy o
continuous signal and its dependence upon the sampling
the digitization. A uniformly sampled signal with expone
tial covariance is shown to have Markov continuum corre
tions, and an exact analytic result for the entropy is obtai
and analyzed in the infinite sampling and digitization limi
A similar analysis is carried out for a binary model in whic
the digital correlations are Markovian, which turns out to
just the Ising spin lattice model of statistical mechanics. W
conclude with a summary of the main results and a disc
sion of the prospects for generalizing the Markovian a
proximation to more than one dimension.

I. CORRELATED RANDOM SIGNAL

We have in mind a general treatment of communicat
and data storage, but to be specific we shall formulate
problem as if it were a one-dimensional signal or time ser
Moreover, we imagine that the signal is already sampled
that it comprisesN data. We shall also digitize the signal in
L levels; the total number of possible distinct signals is th
LN. We shall speak of the probability of the occurrence o
signal or of a sequence of data. By this we mean two thin
First, we can imagine that the signals are taken from a la
collection of signals that share similar characteristics, and
probability of a particular signal refers to the frequency w
which that signal occurs in the collection, and similarly for
particular data sequence. Second, we can imagine tha
signal is very long and that we can measure the frequenc
the occurrence of particular data sequences along its len
assuming that the signal is homogeneous in a statis
sense. These two interpretations of the probability of d
sequences essentially correspond to the ergodic hypothes
ch
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statistical mechanics, namely, that ensemble averages
time averages are equivalent. In the present context
equivalence implies that in a statistical sense the signa
stationary or homogeneous in time.

A. Gaussian random signal

Suppose we sample a continuous signal at po
r 1 ,r 2 , . . . ,r N and that each measurement yieldssi
P(2`,`). We focus on the probability density, which
proportional to the probability that atr 1 the signal is between
s1 ands11ds1, at r 2 the signal is betweens2 ands21ds2,
. . . , and atr N the signal is betweensN and sN1dsN . The
signal represents a Gaussian or normal random process
probability density is of the form

v~N!~sN;r N!5~2p!2N/2uKNu21/2expF21

2
sNTKN

21sNG ,
~1.1!

wheresNT5(s1 ,s2 , . . . ,sN) is the transpose of the colum
vectorsN andKN is theN-dimensional covariance matrix. A
usual we define reduced probability densitiesv (n)(sn;r n),
which are obtained by integrating out the remainingN2n
samples. This corresponds to projecting the covariance
trix onto ann-dimensional subspace and hencev (n) is also
Gaussian with covariance matrixKn . The elements of the
covariance matrix are in general

$K% i j [^sisj&2^si&^sj&

5E
2`

`

dsiE
2`

`

dsj~si2^si&!~sj2^sj&!v~2!~si ,sj ;r i ,r j !

~1.2!

and they take the form$K% i j 5K(r i ,r j )5K(r i j ), r i j
5ur i2r j u, for a stationary process. For the Gaussian proc
the signal is symmetric about its mean, which without loss
generality we take to be zero,

^si&5E
2`

`

dsisiv
~1!~si ;r i !50, ~1.3!

and following convention we scale the signal such that

$K% i i 51. ~1.4!

One way to generate a normal distribution is from t
superposition of random waves

s~r !5A 2

M (
n51

M

cos~knr 2fn!. ~1.5!

Here each phasefn is randomly selected from a uniform
distribution on@0,2p# and each wave vectorkn is randomly
selected from a specified spectral distributionf (k), which we
assume to be normalized. Hence the average of a func
that depends upon thes(r i) is
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^a&5
1

~2p!ME0

2p

df1•••dfM

3E
2`

`

dk1•••dkM f ~k1!••• f ~kM !a. ~1.6!

In particular,

^s~r !&50, ~1.7!

^s~r !2&5
1

~2p!M

2

M (
n51

M

(
m51

M E
0

2p

df1•••dfM

3E
2`

`

dk1•••dkM f ~k1!••• f ~kM !

3cos~knr 2fn!cos~kmr 2fm!

5
1

pE2`

`

dk f~k!E
0

2p

df cos2~kr2f!

51, ~1.8!

and

K~r 1 ,r 2!5^s~r 1!s~r 2!&5
1

~2p!M

2

M (
n51

M

(
m51

M

3E
0

2p

df1•••dfM

3E
2`

`

dk1•••dkM f ~k1!••• f ~kM !

3cos~knr 12fn!cos~kmr 22fm!

5E
2`

`

dk f~k!cosk~r 12r 2!. ~1.9!

We see that the covariance or height-height correlation fu
tion is just 2p times the inverse Fourier transform of th
spectral distribution of the waves. Finally, the signal gen
ated by this superposition of random waves is indeed Ga
ian,

v~M !
~1! ~ t;r !5^d„t2s~r !…&M

5E
2`

`

dt8v~M21!
~1! ~ t8;r !v~1!

~1!~ t2t8;r !,

~1.10!

where we have exhibited the dependence on the numbe
waves explicitly. Taking the Fourier transform of the conv
lution integral, we obtain

v̂~M !
~1! ~q;r !5v̂~M21!

~1! ~q;r !v̂~1!
~1!~q;r !5v̂~1!

~1!~q;r !M.
~1.11!

Now
c-

-
s-

of
-

v~1!
~1!~ t;r !5

1

2pE2`

`

dk f~k!E
0

2p

df d„t2A2/Mcos~kr2f!…

5
1/p

A2/M2t2
, utu,A2/M ~1.12!

and hence

v̂~M !
~1! ~q;r !5@J0~qA2/M !#M

;S 12
2q2

4M D M

;e2q2/2, M→`. ~1.13!

Inverting this we have

v~1!~s,r !5
1

A2p
e2s2/2, ~1.14!

which is the desired normal form. This argument can
generalized to show thatv (N) itself is Gaussian.

B. Binary digitization

The continuous Gaussian random signal is digitized
assigning the measured value at a node to a cell indexe
an integer. That is, the probability densities are converted
probabilities by integrating them over the level widths. F
the numerical tests we consider only the binary problemL
52, in which the states correspond to whether the signal
particular time is positive or negative. The singlet probabil
for a positive signal is

` ~1!~1;r ![r5E
0

`

ds v~1!~s;r !5
1

A2p
E

0

`

ds e2s2/251/2,

~1.15!

which is independent ofr because we are dealing with ho
mogeneous signals.

The pair probability depends upon the spectral distrib
tion of the signal viaK(r ). Inverting the covariance matrix
we have

v~2!~s1 ,s2 ;r !5
1

2pA12K~r !2

3expF2
s1

222K~r !s1s21s2
2

2@12K~r !2#
G .

~1.16!

The probability that two measurements separated byr are
both positive is@3,4#

` ~2!~1,1;r !5E
0

`

ds1E
0

`

ds2v~2!~s1 ,s2 ;r !

5F11
2

p
arcsinK~r !GY4 ~1.17!

and the pair-correlation function is
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g~2!~s1 ,s2 ;r ![` ~2!~s1 ,s2 ;r !/r~s1!r~s2!

511s1s2

2

p
arcsinK~r !, ~1.18!

wheres i561. It is also possible to give an analytic expre
sion for the triplet correlation function@3,4#

g~3!~s1 ,s2 ,s3 ;r 12,r 23,r 31!

511
2

p
@s1s2arcsinK~r 12!

1s2s3arcsinK~r 23!1s3s1arcsinK~r 31!#.

~1.19!

C. Simulation

To obtain benchmarks to test the entropy expansions
simulated correlated Gaussian signals by the superpositio
random waves. The details of the simulation and the esti
tion of the entropy have been described by Marcˇelja @5#. We
used a Lorentzian spectral distribution

f ~k!5
g/p

g21k2
, ~1.20!

which has exponential covariance function

K~r !5e2gur u. ~1.21!

We also used a Gaussian spectral distribution

f ~k!5
s

A2p
e2s2k2/2, ~1.22!

which has covariance function

K~r !5e2r 2/2s2
. ~1.23!

Hereg21 ands are the correlation lengths of the respecti
models. Both the Gaussian and the Lorentzian can be us
represent naturally occurring signals. The difference betw
them is that the Lorentzian model contains much-high
frequency components than the Gaussian model.

In the case of the Lorentzian we used the discrete Fou
transform for the simulations. For sampling on a grid ofN
points of uniform spacingD r such thatr n5nD r ,

f n5
N21sinhgD r

coshgD r2cosknD r
, ~1.24!

wherekn52pn/ND r . For the Gaussian model we approx
mated its discrete Fourier transform by evaluating the c
tinuous function on the grid points,f n5 f (kn).

Figure 1 shows typical random Gaussian signals obtai
from the simulation. The most noticeable difference betwe
the Lorentzian and Gaussian models are the high-freque
components that are present in the former, due to the s
k22 decay of the spectral density. The low-frequency co
ponents of the two signals are rather similar and in b
-

e
of
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to
n

r-

er

-

d
n
cy
w
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h

cases one can visualize similarly sized domains. This simi-
larity is particularly clear in the digitized, sampled signals.

For the simulations the Gaussian random process is con-
structed in Fourier space and then the fast Fourier transform
is used to gives(r i). The number of sample points was
typically N5216–218. The larger number of points was re-
quired for signals with longer correlation lengths. One ran-
dom wave was generated for each of the discrete wave vec-
tors $kn% ~thus M5N) by choosing the phases$fn%
randomly from a uniform distribution on@0,2p# and by as-
signing the wave an amplitude in proportion to the spectral
distribution. The number of independent signals used to col-
lect the statistics was typically 2000. It was always checked
that the results were independent of the simulation system
size and the number of realizations.

The entropy was calculated in a fashion similar to that
used by Shannon to estimate the redundancy of the English
language@1#. First the signal is leveled at each sampling
point so that it has a binary value. Clusters ofm sites are
analyzed and the probability of each of the 2m possibilities is
evaluated from the number of times it recurs in the process.
The entropy of clusters of this size is simplyS(m)

5( i 51
2m

` i ln`i . To save memory we exploit both the up-down
symmetry of the spins, by storing a sequence and its comple-
ment together, and the time-reversal symmetry of the signal,
by storing a sequence together with its reversal. The entropy
per siteS(m)/m is then plotted against 1/m and the infinite
limit result is estimated by extrapolating to 1/m50.

An example of the extrapolation procedure used for the
estimation of the entropy in the simulations is shown in Fig.
2. The entropy per node is plotted against the reciprocal of
the number of nodes used in the subsequences. This ex-
ample, which is a Lorentzian signal with relatively short-
ranged correlationsg50.5, is typical of the results obtained
here. From the figure we estimate the simulated entropy per
node for this signal ass50.6008.

FIG. 1. Correlated random signals with~a! Lorentzian and~b!
Gaussian spectral densities. The result of binary digitization and
regular sampling of the signal is shown as symbols. The correlation
length is five nodes in both cases.
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II. ENTROPY EXPANSIONS

A. Generalized Kirkwood superposition expansion

We cast the digitized, sampled signal as a spin lat
model in statistical mechanics. We consider a lattice ofN
sites, each site occupied by a spin variable withL possible
levels:s i51,2, . . . ,L, i 51,2, . . . ,N. Each configuration of
the spins corresponds to a particular signal. There is no c
straint on the value of the total spin: In the language of
lattice gas this is an (L21)-component open system. W
will denote a configuration of a subset ofn sites by (sn;r n),
which meanss1 at r 1 , s2 at r 2, . . . , andsn at r n , wherer i

is a particular lattice site. We let̀(N)(sN;r N) be the prob-
ability of a particular configuration of the system occurrin
Shannon@1# showed that the information entropy is

S52k(
sN

` ~N!~sN;r N!ln` ~N!~sN;r N!. ~2.1!

The sum is over theLN possible configurations of the sys
tem. Henceforth we shall set the constantk51. Although
formally exact, this expression cannot be used in this fo
because in general one does not know the probability o
of the configurations of the system. If all configurations we
equally likely then` (N)5L2N and S5NlnL. Correlations
imply that some configurations are more likely than othe
which makes the system predictable to some extent and
sequently reduces the entropy,S<NlnL.

We will now formally expand the entropy in terms o
correlation functions. First we define then-site probability,
which is the probability that a particular subset ofn sites will
have a specific set of spins, irrespective of the spins at
remaining sites,

FIG. 2. Entropy per site obtained from the simulations by e
trapolation, using the probability distribution of subsequences
size n. This is an example of the procedure for the Lorentz
model withgD r50.5.
e

n-
e

.

ll
e

,
n-

e

` ~n!~tn;r n!5(
sN

` ~N!~sN;r N!)
i 51

n

d~t i ,s i !, ~2.2!

where the Kronecker delta appears. Perhaps most impo
is the singlet probabilitỳ (1)(t;r ); for a homogeneous sys
tem this is independent of the siter , in which case we denote
it by r(t). We shall also define a correlation functiong(n),
which is just the probability normalized by the singlet pro
abilities,

g~n!~tn;r n!5` ~n!~tn;r n!Y )
i 51

n

` ~1!~t i ;r i !. ~2.3!

The pair-correlation function is the most familiar of thes
for a homogeneous system this only depends upon the~lat-
tice! separation of the two sitesg(2)(t1 ,t2 ;r 12). The depar-
ture of g(n) from unity measures the correlation betwe
the subset of sites; if the sites are independent of e
other theng(n)51. We shall be concerned with system
with finite-ranged correlations, which means in the limit th
one site is far from the rest; we haveg(n)(tn;r n)
→g(n21)(tn21;r n21), r n→`. If all the sites are well sepa
rated,g(n)(tn;r n)→1, r n→`. Note that because we are dea
ing with an open system the asymptotic limit is precise
unity.

We can use the asymptotic behavior of the correlat
functions to define a generalized Kirkwood superposition
pansion. Forn>3 we define

g~n!~sn;r n![D~n!~sn;r n!)
s52

n21

3F)
$ i s%

g~s!~s i 1
, . . .s i s

;r i 1
, . . . r i s

!G ~21!s1n21

,

~2.4!

where the inner product is over thenCs different ways of
choosings sites from then sites. This expression formally
defines the remainderD (n); the generalized Kirkwood super
position approximation is to takeD (n)51 ~cf. Ref. @6#!. Re-
iss @7# derived the generalized superposition expression
ing a variational argument, and it can be shown to be
only superposition approximation that is consistent with
asymptotic behavior of the correlation functions@8#. For the
triplet correlation function we have~using an obvious abbre
viated notation!

g~3!~1,2,3!5g~2!~1,2!g~2!~2,3!g~2!~3,1!D~3!~1,2,3!.
~2.5!

SettingD (3)51 yields the Kirkwood superposition approx
mation @9#. For the quadruplet we obtain

-
f



56 4057INFORMATION CONTENT OF SIGNALS USING . . .
g~4!~1,2,3,4!5
g~3!~1,2,3!g~3!~1,2,4!g~3!~1,3,4!g~3!~2,3,4!

g~2!~1,2!g~2!~1,3!g~2!~1,4!g~2!~2,3!g~2!~2,4!g~2!~3,4!
D~4!~1,2,3,4!

5g~2!~1,2!g~2!~1,3!g~2!~1,4!g~2!~2,3!g~2!~2,4!g~2!~3,4!D~3!~1,2,3!D~3!~1,2,4!

3D~3!~1,3,4!D~3!~2,3,4!D~4!~1,2,3,4!. ~2.6!
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Setting D (4)51 yields the superposition approximatio
given by Fisher and Kopeliovich@10#. By induction it fol-
lows that

g~N!~1,2, . . . ,N!5g~2!~1,2!g~2!~1,3! . . . g~2!~N21,N!

3D~3!~1,2,3! . . . D~N!~1,2, . . . ,N!.

~2.7!

We can now use this formal expression for theN-particle
correlation function in the expression for the entropy. W
write

ln` ~N!~sN;r N!

5 ln@` ~1!~s1 ;r 1!•••` ~1!~sN ;r N!g~N!~sN;r N!#

5(
i 51

N

ln` ~1!~s i ;r i !1 ln@g~2!~1,2!•••g~2!~N21,N!

3D~3!~1,2,3!•••D~N!~1,2, . . . ,N!#

5(
i 51

N

ln` ~1!~s i ;r i !1 (
i 51

N21

(
j 5 i 11

N

lng~2!~s i ,s j ;r i ,r j !

1 (
i 51

N22

(
j 5 i 11

N21

(
k5 j 11

N

lnD~3!~s i ,s j ,sk ;r i ,r j ,r k!1•••.

~2.8!

Using the definition of the reduced probability functions, t
entropy becomes

S52(
sN

` ~N!~sN;r N!ln` ~N!~sN;r N!

52(
i 51

N

(
s i51

L

` ~1!~s i ;r i !ln` ~1!~s i ;r i !

2(
i , j

(
s i ,s j

` ~2!~s i ,s j ;r i ,r j !lng~2!~s i ,s j ;r i ,r j !

2 (
i , j ,k

(
s i ,s j ,sk

` ~3!~s i ,s j ,sk ;r i ,r j ,r k!

3 lnD~3!~s i ,s j ,sk ;r i ,r j ,r k!•••. ~2.9!
For the homogeneous problem and in the limitN→`, this
becomes

S/N52 (
s51

L

r~s!lnr~s!

2
1

2!(j 51

N

(
s i ,s j

` ~2!~s i ,s j ;r i j !lng~2!~s i ,s j ;r i j !

2
1

3!(j 51

N

(
k51

N

(
s i ,s j ,sk

3` ~3!~s i ,s j ,sk ;r i j ,r jk ,r ki!

3 lnD~3!~s i ,s j ,sk ;r i j ,r jk ,r ki!2•••. ~2.10!

Note that these are distinct site probabilities, so t
` (n)(sn;r n)50 if any r i5r j . This then is a formally exac
expansion for the entropy in terms of successively high
order correlation functionsS/N5s11s21•••. An approxi-
mation for the entropy can be obtained by neglectingsn and
higher-order terms, which corresponds to settingD (n)51.
Such correlation function expansions for the entropy are w
known in liquid-state theory~see Ref.@11# and references
therein!; the present derivation follows that of Wallace@12#.

B. Generalized Markovian expansion

The superposition approximation given above is gener
applicable. But for a one-dimensional lattice it is possible
do better by exploiting the order inherent in the geomet
Specifically, the correlation between three sitesi , j , andk,
ordered along the line such thatr i,r j,r k , is largely deter-
mined by the correlation of the terminal sites with the cent
site,

g~3!~s i ,s j ,sk ;r i ,r j ,r k!

'g~2!~s i ,s j ;r i ,r j !g
~2!~s j ,sk ;r j ,r k!.

~2.11!

This Markovian approximation for the triplet correlatio
function has been previously exploited in theories for ch
polymers @8,13#. It has the correct asymptotic behavior
r k→`, namely, only the correlation between sitesi and j
remains. For the quadruplet case we can generalize thi
taking
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g~4!~s i ,s j ,sk ,s l ;r i ,r j ,r k ,r l !

'
g~3!~s i ,s j ,sk ;r i ,r j ,r k!g

~3!~s j ,sk ,s l ;r j ,r k ,r l !

g~2!~s j ,sk ;r j ,r k!
,

~2.12!

where r i,r j,r k,r l . The denominator corrects for th
double counting of the shared pair. This may be seen sinc
po
te
io
as

r l → `, g(3)(s j ,sk ,s l ;r j ,r k ,r l) → g(2)(s j ,sk ;r j ,r k),
which cancels with the denominator leavingg(4)(s i ,

s j ,sk ,s l ;r i ,r j ,r k ,r l) → g(3)(s i ,s j ,sk ;r i ,r j ,r k), as re-

quired. Extending this to the general case, we defineD̄ (n) as

the ratio of then-site correlation function to its generalize

Markovian superposition approximation and we have the f

mal definition
ive
ve
g~n!~s i 1
•••s i n

;r i 1
•••r i n

![
g~n21!~s i 1

•••s i n21
;r i 1

•••r i n21
!g~n21!~s i 2

•••s i n
;r i 2

•••r i n
!

g~n22!~s i 2
•••s i n

;r i 2
•••r i n

!
D̄~n!~s i 1

•••s i n
;r i 1

•••r i n
!,

~2.13!

wherer i j
,r i k

if j ,k.

The entropy is a functional ofg(N), which because of the ordering involves allN sites consecutively. We denote consecut
site probabilities byP(n) and consecutive site correlations byG(n) and exhibit the location of only the first site. Hence we ha

G~N!~s1 ,s2 , . . . ,sN ;r 1!

5
G~N21!~s1 , . . . ,sN21 ;r 1!G~N21!~s2 , . . . ,sN ;r 2!

G~N22!~s2 , . . . ,sN21 ;r 2!
D̄~N!~s1 ,s2 , . . . ,sN ;r 1 ,r 2 ,•••r N!

5G~2!~s1 ,s2 ;r 1!G~2!~s2 ,s3 ;r 2!•••G~2!~sN21 ,sN ;r N21!

3D̄~3!~s1 ,s2 ,s3 ;r 1 ,r 2 ,r 3!•••D̄~3!~sN22 ,sN21 ,sN ;r N22 ,r N21 ,r N!•••D̄~N!~s1 ,s2 , . . . ,sN ;r 1 ,r 2 , . . . ,r N! ~2.14!
ed
its

ve

,
-

a-

on,

a
he
ble
and consequently the entropy is

S52(
i 51

N

(
s i51

L

` ~1!~s i ;r i !ln` ~1!~s i ;r i !

2 (
i 51

N21

(
s i ,s i 11

P~2!~s i ,s i 11 ;r i !lnG~2!~s i ,s i 11 ;r i !

2 (
i 51

N22

(
s3

P~3!~s i ,s i 11 ,s i 12 ;r i !

3 lnD̄~3!~s i ,s i 11 ,s i 12 ;r i ,r i 11 ,r i 12!2•••. ~2.15!

In the limit N→` ~so thatN21 can be replaced byN, etc.!
and for a homogeneous system@`(s,r i)5`(s)[r(s)#,
the entropy per site is

S/N52 (
s51

L

r~s!lnr~s!2(
s,t

r~s!r~t!G~2!~s,t!lnG~2!

3~s,t!2 (
s,t,l

r~s!r~t!r~l!G~3!~s,t,l!

3 lnD̄~3!~s,t,l!2•••. ~2.16!

Notice that compared to the generalized Kirkwood super
sition approximation, which sums correlations over all si
with an appropriate combinatorial factor, this express
only involves correlations between consecutive sites.
-
s
n

C. Limit of large and small correlations

A guide to the accuracy of the approximations obtain
by truncating the expansions is given by examining the lim
of extreme correlations. In the low-correlation limit we ha

` ~N!~sN;r N!;)
i 51

N

r~s i ! ~2.17!

and the entropy is

S/N52 (
s51

L

r~s!lnr~s!. ~2.18!

In this limit all the correlation functions are unity
g(n)(sn;r n)51, n52, . . . ,N. Consequently, both the Kirk
wood and the Markov generalized superposition approxim
tions are exact,D (n)(sn;r n)5D̄ (n)(sn;r n)51, n53, . . . ,N,
and only the first term contributes to the entropy expansi
giving the exact result in both cases.

In the opposite fully correlated regime, where there is
distribution of the spin among the different systems of t
ensemble, but the spins of any one system in the ensem
are identical, we have

` ~N!~sN;r N!;r~s!)
i 51

N

d~s i ,s!. ~2.19!

The entropy is
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S52(
sN

` ~N!~sN;r N!ln` ~N!~sN;r N!52 (
s51

L

r~s!lnr~s!,

~2.20!

which no longer scales with the size of the system. In t
limit the probability is` (n)(sn;r n)5r(s)) i 51

n d(s i ,s), and
hence the correlation functions for identical spins a
g(n)(s•••s;r n)5r(s)12n, n52, . . . ,N. Now in the case of
the generalized Kirkwood superposition approximation
remainder is

D~n!~s•••s;r n!5r~s!2~n21!r~s!~n22!nCn21

3r~s!2~n23!nCn22
•••r~s!

nC2~21!n11
.

~2.21!

The exponent is

exp5~12n!@nCn2nCn211nCn222•••1~21!n12nC2#

2@nCn2122 nCn2213 nCn23

2•••1~21!n11~n22!nC2#

5~12n!@nC12nC0#~21!n

2@~n21!nC12nnC0#~21!n11

5~21!n11, ~2.22!

which gives

D~n!~s•••s;r n!5r~s!~21!n11
. ~2.23!

Using this the generalized Kirkwood superposition appro
mation for the entropy yields~replacing the sums over pa
ticle positions byN21, N22, etc.!

S52N (
s51

L

r~s!lnr~s!2
N~N21!

2! (
s51

L

r~s!lng~2!~s,s!

2
N~N21!~N22!

3! (
s51

L

r~s!lnD~3!~s,s,s!2•••

5F211S 12N1
N~N21!

2!
2

N~N21!~N22!

3!
1••• D G

3 (
s51

L

r~s!lnr~s!

5@211~121!N# (
s51

L

r~s!lnr~s!

52 (
s51

L

r~s!lnr~s!. ~2.24!

This is certainly the exact result, but it required the prec
cancellation of all the terms. In general, if the expansion
truncated after a few termsn&N/2, an error of orderNn will
be made. This completely dominates the exact entro
which is of order unity. We conclude that the generaliz
s

e

e

-

e
s

y,
d

Kirkwood superposition approximation is not a good expa
sion for highly correlated systems.

The generalized Markov superposition approximation
much better behaved in this regard since the remainder

D̄~n!~s•••s;r n!5
G~n!~s•••s!G~n22!~s•••s!

G~n21!~s•••s!G~n21!~s•••s!

5
r~s!12nr~s!32n

r~s!22nr~s!22n
51. ~2.25!

Accordingly, only the first two terms in the entropy expa
sion are nonzero,

S52N (
s51

L

r~s!lnr~s!2~N21! (
s51

L

r~s!lnG~2!~s,s!

52@N2~N21!# (
s51

L

r~s!lnr~s!52 (
s51

L

r~s!lnr~s!,

~2.26!

which is the exact result. In this case we see that any tr
cation of the Markovian expansion forn>3 will still yield
the exact entropy in the completely correlated limit.

D. Numerical results

Results for the Lorentzian and for the Gaussian mod
are given in Tables I and II, respectively. For both the ge
eralized Kirkwood superposition approximation and t
Markov superposition approximation we give the two- a
three-term expansions. It can be seen that in the latter
two terms are already good and that the third term give
minor but consistent improvement. In general, the entro
per node is a maximum for the random signal~small corre-
lation length! and goes to zero as the correlation length
creases.

Figure 3 graphically tests the truncated expansion ba
upon the generalized Kirkwood superposition express
against the simulation result for the Lorentzian model. F
weak correlationsg*0.5, the two- and three-term expan

TABLE I. Entropy per site for the Lorentzian model as a fun
tion of inverse correlation length.

Kirkwood Markov
g Simulation s11s2 s11s21s3 s11s2 s11s21s3

1.5 0.6827 0.6823 0.6828 0.6829 0.6828
1.0 0.6636 0.6598 0.6641 0.6641 0.6636
0.6 0.6205 0.5960 0.6299 0.6231 0.6209
0.5 0.6008 0.5592 0.6216 0.6044 0.6011
0.25 0.511 0.3108 0.7688 0.5216 0.5130
0.1 0.383 -0.5088 3.6089 0.4049 0.3898
0.05 0.2964 -1.9202 16.724 0.3247 0.3069
0.025 0.222 -4.7733 74.680 0.2559 0.2375
0.01 0.148 -13.373 502.8 0.1833 0.1664
0.005 0.108 -27.727 2064 0.1410 0.1260
0.0025 0.078 -56.452 8368 0.1076 0.0949
0.001 0.053 -142.64 52716 0.0747 0.0648
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sions agree with each other and with the simulation result
this regime the entropy per site is justS/N's15 ln2. As the
correlation length is increased the entropy drops and the
approximations bracket the simulation result. In fact, th
begin to diverge as the third term in the expansion overc
rects the error in the first two terms. The approximation

TABLE II. Entropy per site for the Gaussian model as a fun
tion of correlation length.

Kirkwood Markov
s Simulation s11s2 s11s21s3 s11s2 s11s21s3

800 0.004 -105.992 16 794 0.0035 0.0035
400 0.007 -85.8003 10 880 0.0065 0.0065
200 0.011 -58.6195 4676.509 0.0118 0.0118
100 0.022 -31.7868 1249.406 0.0215 0.0215
50 0.040 -15.418 296.5258 0.0385 0.0385
20 0.080 -5.5511 40.6511 0.0817 0.0815
12 0.120 -2.9237 12.3082 0.1224 0.1218
5 0.230 -0.6361 1.2667 0.2364 0.2339
2 0.4225 0.31755 0.42066 0.43274 0.4252
1 0.5972 0.60066 0.59786 0.60443 0.5988
0.7 0.6569 0.66528 0.66422 0.66533 0.6642
0.5 0.6815 0.68941 0.68938 0.68941 0.6893
0.36788 0.68945 0.69302 0.69302 0.69302 0.6930
0.25 0.69234 0.69315 0.69315 0.69315 0.6931
0.125 0.69310 0.69315 0.69315 0.69315 0.6931
0.0625 0.69314 0.69315 0.69315 0.69315 0.6931
0.02 0.69315 0.69315 0.69315 0.69315 0.6931

FIG. 3. Entropy per site as a function of inverse correlat
length~in units of the node spacing! for the binary digitized Lorent-
zian model. The symbols represent the simulation results and
curves represent the generalized Kirkwood superposition appr
mation~the dotted curve uses two terms in the series and the da
curve uses three!.
In
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useless for signals with correlations extending more than
few nodes.

In contrast, the truncated expansion based upon the g
eralized Markov superposition expression is uniformally ac
curate for all correlation lengths, as can be seen in Fig.
The two-term approximation is already quite good and in
cluding the third term gives even better agreement with th
simulation data.

Figure 5 tests the expansions for the Gaussian signal a
the conclusions are similar to those drawn for the Lorentzia
The validity of the Kirkwood approximation is restricted to
weak correlations and the Markov expression is uniforml
accurate over the whole regime.

The sigmoidal character of the entropy as a function o
the inverse correlation length is more apparent for the Gaus
ian signal than for the Lorentzian~cf. Fig. 4!. Although both
asymptotically approachs; ln2 for correlations not extend-
ing beyond nearest neighbors, they approach the oppos
highly correlated limits50 at different rates. The Gaussian
already appears asymptotic by the time the correlation leng
is 100 nodes or so, whereas the Lorentzian entropy is s
noticeably nonzero even with a correlation length of 1000
This is no doubt due to the influence of the high-frequenc
spectral components in the latter model.

The Markov approximation will work well for a broad
class of signals. We also carried out tests for periodic signa
by using a model with sinusoidal covariance and expone
tially decaying amplitude. The performance of the Marko
approximation was similar to the above, except for signa
with long-period oscillations and even longer correlatio
length. The entropy for these highly correlated signals tend
to be overestimated by both the simulations and the Marko
approximation; the deterministic changes of sign were pe
ceived as random by both. We have not shown these resu

-

he
i-
ed

FIG. 4. Test of the generalized Markov superposition approx
mation for the Lorentzian model. The symbols are the simulatio
data, the dashed curve is the two-term series, and the full cur
includes the first three terms.
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because the cluster sizes required to estimate reliably
entropy from the simulations was intractably large in th
regime.

III. ENTROPY OF A CONTINUOUS SIGNAL

The analysis and results that were obtained above app
to a signal that had already been sampled and digitized.
now address the question of whether it is meaningful
speak of the entropy of a continuous signal and we exp
the relationship between the probability and the probabi
density and between the corresponding digital and the a
logue entropies.

In Sec. III A we distinguish between the formally exa
expression for the discrete entropy and an approximate
pression that is applicable to continuous signals and we
the criterion that sets the regime of validity of the latter~Sec.
III A 1 !. In Sec. III B we explore the example of an exp
nentially covariant continuous Gaussian random sign
which yields to exact analysis. In Sec. III B 1 it is shown th
the correlation functions of the model are Markovian, whi
allows us to obtain explicitly the results for the approxima
entropy. The validity of the digitization approximation is d
rived in Sec. III B 2, and the entropy in the limits of infinit
sampling and digitization is obtained explicitly in the gene
case~Sec. III B 3! and for binary digitization~Sec. III B 4!.
The results of this section make clear the sense in which
entropy of a continuous signal depends upon the degre
sampling and digitization. In Sec. III C 1 we give an examp
of a binary digitized signal that has Markovian correlation
which means that the entropy can be calculated exactly. T
turns out to be equivalent to the one-dimensional Ising s
lattice model with nearest-neighbor interactions.

FIG. 5. Gaussian model. The symbols are the simulation d
the dotted and dashed curves are the two- and three-term gen
ized Kirkwood superposition approximation, respectively, and
full curve is the three-term generalized Markov superposition
proximation, which on this scale is indistinguishable from the tw
term version.
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A. Exact and approximate entropies

In practice, a continuous signal has to be sampled
digitized, by measuring it at regular intervals and by assi
ing each measurement one of a discrete set of values. Th
appropriate and consistent with using entropy to meas
information content because entropy itself is only defined
discrete probabilities. The question we address here is
dependence of the value of the entropy on the proces
sampling and digitization.

We imagine that the continuous signals(r ) has been
sampled at regular intervals, so thatsn5s(r n) and r n
5nD r , wheresP(2`,`) is real variable, and we now wish
to digitize it and to convert the probability densitiesV (n) to
probabilitiesP(n). We define an integer variables that in-
dexes the cell in which the measured signal falls. For s
plicity we take the cells to be of uniform widthDs . @It is
straightforward to replace this constant width by a functi
Ds(s), if desired.# The discretization is accomplished b
means of a coarse-grainedd function,

QD~s,t ![u~s2t1Ds/2!u~ t2s1Ds/2!, ~3.1!

where the Heaviside step function isu(x)51, x.0, and
u(x)50, x,0. This is more closely related to the Kroneck
d rather than the Diracd, which is important because w
shall use the propertyQ lnQ50. With this the discrete prob
ability for n consecutive sites is defined to be

P~n!~sn![E ds1•••dsnV~n!~sn!)
i 51

n

QD~s iDs ,si !.

~3.2!

The entropy is the functional of the discrete probabil
that has been used throughout. Accordingly, this definition
the discrete probability determines uniquely the entropy
the continuous signal

S~Ds ,D r ![2(
sN

P~N!~sN!lnP~N!~sN!. ~3.3!

Here we have explicitly indicated that the value of the e
tropy of the continuous signal depends upon the degre
sampling and upon the level of digitization; it is not possib
to speak of an entropy independent of these. It is emphas
that this definesthe entropy of the continuous signal. Thi
definition and that for the probability are formally exact a
as such they are always valid.

It is possible to make a useful approximation to the
exact expressions that becomes increasingly valid as
level of digitization is refined. We approximate the integr
by a trapezoidal sum to obtain an approximation for the c
secutive site probabilityP̃(n)'P(n), where

P̃~n!~sn![Ds
nV~n!~Dss1 , . . . ,Dssn!. ~3.4!

This is a valid approximation for the discrete probabili
when the integrand is slowly varying over the range of t
discrete cells. We obtain the criteria for the validity of th
approximation below.

We may also define an entropy that is an integral of
probability densities
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S̃~Ds ,D r ![2E
2`

`

ds1•••dsNV~N!~sN!lnDs
NV~N!~sN!.

~3.5!

The reason for choosing this particular definition is th
within the validity of the digitization approximation,

S̃~Ds ,D r !'2(
sN

Ds
NV~N!~s1Ds , . . . ,sNDs!

3 lnDs
NV~N!~s1Ds , . . . ,sNDs!

'2(
sN

P̃~N!~sN!lnP̃~N!~sN!. ~3.6!

Hence this has the same appearance as the formal defin
of entropy and insofar asP̃(n)'P(n), thenS̃'S. There is no
way of avoiding the appearance of the cell sizeDs in the
defining expression forS̃, as dimensional consideration
make clear. In many applications entropy differences w
the same level cuts are the main concern, in which case a
additive constant the width of the levels does not contribu

Validity of the digitization approximation

In practice, a guide to the permitted size of the level sp
ing Ds for the digitization approximation to be valid may b
obtained by analyzing the singlet and neighbor correlat
function. For Gaussian signals we expect that the width
the levels should be small compared to the variance and
deed this is essentially the criterion that we derive. Perh
the most straightforward way to proceed is to note that if
probability density is slowly varying over the cell width
then the probability of adjacent levels must be simil
P̃(1)(s61)' P̃(1)(s) or V (1)(s6Ds)'V (1)(s). Further-
more, errors in the tail of the distribution are unimportant,
that we only need to apply this criterion in the region
maximum probability

uV~1!~Ds!2V~1!~0!u!V~1!~0!. ~3.7!

This alone is not sufficient because we are also conce
with effects of correlations on the digitization. The most im
portant correlation is between neighbor nodes. Again,
insist upon a gradual variation in the neighbor probabi
V (2)(s1 ,s26Ds)'V (2)(s1 ,s2). The worst case scenario
clearly s15s250 and the criterion becomes

uV~2!~0,Ds!2V~2!~0,0!u!V~2!~0,0!. ~3.8!

B. Example: Exponential covariance

1. Markovian factorization of the correlation densities

The aim of this section is to solve a specific continuu
model in which the approximate entropy can be obtain
analytically and to exhibit the continuum limits of this mod
explicitly. We consider a Gaussian random signal with ex
nential covariance~this is the same as the model wi
Lorentzian spectral distribution considered numerica
above!

^s~r !s~ t !&5e2gur 2tu, ~3.9!
t
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where s(r )P(2`,`). If the signal is sampled at regula
intervals, so thatsn5s(r n) and r n5nD r , then the covari-
ance is

^sisj&5xu i 2 j u, ~3.10!

wherex[e2gDr.
We now focus upon consecutive nodes. The covaria

matrix for n consecutive nodes is

Qn5S 1 x x2
••• xn21

x 1 x ••• xn22

x2 x 1 ••• xn23

A � A

xn21 xn22 xn23
••• 1

D . ~3.11!

By induction it follows that the inverse is the tridiagon
matrix

Qn
215

1

12x2S 1 2x 0 ••• 0

2x 11x2 2x ••• 0

0 2x 11x2
••• 0

A � A

0 0 0 ••• 1

D .

~3.12!

That is, entries on the main diagonal equal 11x2, except for
the first and the last, which equal 1, and entries immedia
above and below the main diagonal equal2x. Again, by
induction we can show that the determinant of the conse
tive covariance matrix is

uQnu5~12x2!n21. ~3.13!

The usual Gaussian probability density forn consecutive
sites

V~n!~sn!5
exp@2snTQn

21sn/2#

~2p!n/2~12x2!~n21!/2
~3.14!

has an exponent that in this case simplifies to

2snTQn
21sn

2
5

21

2~12x2!
F ~11x2!(

i 51

n

si
222x(

i 51

n21

si 11si

2x2~s1
21sn

2!G . ~3.15!

We introduce the consecutive site correlation function

G~n!~sn!5V~n!~sn!Y )
i 51

n

V~1!~si !, ~3.16!

where the single site probability density is, as usual,

V~1!~s!5
1

A2p
e2s2/2 ~3.17!

and the neighbor probability density is
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V~2!~s1 ,s2!5
1

2pA12x2
expF 21

2~12x2!
~s1

222s1s2x1s2
2!G .

~3.18!

The exponential covariance function is important beca
it gives a Markovian consecutive site correlation functio
We exploit this fact in evaluating the approximate entrop
whose correlation function expansion terminates after
terms. The Markovian character follows because the ex
nent of then-site probability density may be written

2
snTQn

21sn

2
52

s~n21!TQn21
21 sn21

2

2
1

2~12x2!
@sn

21x2sn21
2 22xsnsn21#

~3.19!

and consequently

V~n!~sn!5V~n21!~sn21!
1

A2p~12x2!

3expF 21

2~12x2!
~sn

21x2sn21
2 22xsnsn21!G

5V~n21!~sn21!V~2!~sn21 ,sn!/V~1!~sn21!

5V~1!~s1!)
i 51

n21

V~2!~si ,si 11!/V~1!~si !. ~3.20!

Alternatively,

G~n!~sn!5 )
i 51

n21

G~2!~si ,si 11!, ~3.21!

which is the Markovian factorization. This exact result f
the Gaussian probability density is peculiar to an exponen
covariance function and equally spaced sampling points.

The exactP(n) does not preserve the Markovian charac
of the consecutive site correlations. However, the appro

mation P̃(n)5Ds
nV (n) remains Markovian and hence the a

proximate entropy can be calculated directly from the fi
two terms of the Markovian expansion,
e
.
,
o
o-

al

r
i-

t

S̃~Ds ,D r !52E
2`

`

ds1•••dsNV~N!~sN!lnDs
NV~N!~sN!

52E
2`

`

ds1•••dsNV~N!~sN!

3 lnDs
NV~1!~s1!•••V~1!~sN!

3G~2!~s1 ,s2!•••G~2!~sN21 ,sN!

52NE
2`

`

ds1V~1!~s1!lnDsV
~1!~s1!

2NE
2`

`

ds1E
2`

`

ds2V~2!~s1 ,s2!lnG~2!~s1 ,s2!

5
N

2 F11 ln
2p~12x2!

Ds
2 G , ~3.22!

assuming thatN21 can be replaced byN.
This result is a particular example of the general result

a Gaussian probability density obtained by Shannon@1#. In
the present language the general result would be written

S̃~Ds ,D r !5
N

2
1 ln@~2p!N/2Ds

2NAuKNu#. ~3.23!

The advantage of the present analysis is that it makes c
the relationship between the exact and the approximate
tropies; Shannon would have considered his expression fS̃
to be the entropy of the signal, not just an approximation.
addition, the factor arising from the width of the levelsDs

2N

would have been neglected and the entropy would have
peared to be independent of the sampling and of the dig
zation. The present model allows all steps of the derivat
to be exhibited and a final analytic expression for the entro
because the determinant of the covariance matrix has b
obtained explicitly. We now use these explicit results
evaluate the continuum limits.

2. Regime for digitization

We now need to digitize the continuous signal to obtai
result for the exact entropy. The formal expressions forP(n)

andS(Ds ,D r) were given above, but the present signal do
not yield analytic results for them. Analytic results were o
tained forP̃(n) and S̃(Ds ,D r) and here we evaluate the cr
teria for the validity of these approximations.

The first criterion was based on the singlet probabil
densityuV (1)(Ds)2V (1)(0)u!V (1)(0). For thepresent nor-
mal distribution this reduces to

Ds!A2. ~3.24!

The criterion based on neighbor correlations w
uV (2)(0,Ds)2V (2)(0,0)u!V (2)(0,0). In the present case th
digitization is valid when

Ds!A2~12x2!. ~3.25!

Since in generalx,1, this supersedes the bound establish
by the singlet probability. Notice that these bounds limit t
width of the levels to be much less than the variance of
signal.
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3. Continuum limits

The expression for the entropy of the digitized, sampl
continuous signalS(Ds ,D r)5(sNP(N)(sN)lnP(N)(sN) is for-
mally exact and we want to explore its behavior in the co
tinuum limitsD r→0 andDs→0. The expression for the digi
tized entropyS̃(Ds ,D r)5*dsNV (N)(sN)lnDs

NV(N)(sN) is an
approximation that is valid in the limitDs→0. For the
present exponentially covariant signal,S̃(Ds ,D r)5N@1
1 ln2p(12x2)/Ds

2#/2, wherex5exp@2gDr#. We have thatS̃
5S whenDs!A2(12x2). The entropy is also a function o
the number of sample pointsN and of the number of levels
L, and in addition to the limitsD r→0 andDs→0, we shall
consider the limitsN→` and L→`. Of these 16 possible
combinations of limits the three most important will be t
one withND r fixed, the one withLDs fixed, and the combi-
nation of these two.

We begin with continuous digitization with fixed sam
pling Ds→0 andL→`, with LDs , N, andD r fixed. This is
the limit where the digitization approximation is valid and

S~Ds ,D r !5 S̃~Ds ,D r !;2NlnDs;NlnL, ~3.26!

which is just the uncorrelated limit. This is expected since
the variance of successive samples is large compared to
spacing between the levels, then the continuum nature o
signal is lost and it is indistinguishable from a random sign
The quantityS2NlnL will approach a finite limit asDs→0,
L→` and hence may be regarded as an effective continu
entropy that may be used as a practical indicator of the
ficiency of the digitization.

A related limit is L→`, with Ds fixed. In this case the
extra levels beyondDsL* 5s* add nothing becaus
V (1)(s)50, s*s* . Hence, in this particular limitS→ const.
Henceforth we shall assume that the limits are taken w
DsL fixed.

The infinite sampling limit isgD r→0 or x→1. We can-
not simply insert this into the expression for the digitiz
entropy because that would giveS̃→2`, which cannot be
correct since the entropy should be bounded below by z
The problem is the violation of the digitization criterion an
we must simultaneously takeDs!A2(12x2);A4gD r , and
L→` with LDs fixed. In view of this we can define th
continuum limit of the entropy as

S~Ds ,D r !5 S̃~Ds ,D r !→
N

2
1Nln

A2p4gD r

Ds
,

D r→0, Ds→0,
Ds

2

D r
5 const!4g. ~3.27!

This result holds whetherN→` or whether it is fixed.
Now consider the infinite sampling limitD r→0, with Ds

fixed. ObviouslyDs@A4gD r and the digitization approxi-
mation is not valid. In this case we cannot useS̃, since it is
not a valid approximation to the true entropy, and instead
must calculateS andP directly. The first and easiest case
with fixed N, so thatND r→0. For a continuous signals(r
1D r)5s(r )1O(D r) and hence almost everywhe
P(2)(s1 ,s2)5P(1)(s1)d(s1 ,s2), D r→0. It follows that
,

-

f
the
he
l.

m
f-

h

o.

e

P~n!~sn!;P~1!~s1!)
i 52

n

d~s1 ,s i !, ngD r!1. ~3.28!

The entropy in this limit reduces to

S~Ds ,D r !→2(
s

P~1!~s!lnP~1!~s!,

D r→0, N,Ds fixed. ~3.29!

The limiting result is independent ofx and so the criterion
for the validity of the digitization approximation now de
pends only uponP̃(1)(s), namely,Ds!A2. If this holds we
can explicitly evaluate the entropy

S~Ds ,D r !5 S̃~Ds ,D r !

52E
2`

`

ds V~1!~s!lnDsV
~1!~s!

5
1

2
1 ln

A2p

Ds
, D r→0, Ds!A2,N fixed.

~3.30!

In both cases we see that in the infinite sampling limit w
fixed level spacing the entropy no longer scales with
number of sample nodes. In essence, as the nodes get c
together they become so highly correlated that consecu
nodes almost always are in the same state.

The second, more realistic, infinite sampling limit h
D r→0, N→`, with ND r fixed andDs fixed. In this case we
obtain the functional form of the limiting result by conside
ing correlations at the pair level. For a continuous signal
expect that successive closely spaced nodes will almost
tainly be in the same state, so thatP(2)(s,s)5@1
2e#P(1)(s), wheree!1, and P(2)(s,s11)5eP(1)(s)/2.
There is no chance of the states of consecutive nodes b
separated by more than one level forDs fixed, D r→0. The
dependence ofe on D r follows from

P~2!~s,s11!

5E
sDs2Ds/2

sDs1Ds/2

ds1E
sDs1Ds/2

sDs13Ds/2

ds2

1

2pA12x2

3expF 21

2~12x2!
~s1

222xs1s21s2
2!G

5
e2a2/~11x!

2pA12x2E0

Ds
dt1E

0

Ds
dt2

3expF2@ t1
212xt1t21t2

2#

2~12x2!
GexpF2a~ t12t2!

2~11x! G ,
~3.31!

wherea[sDs1Ds/2. As D r→0, x→1 and the integrand is
dominated by the regiont1&A12x2 andt2&A12x2. In this
region the integrand is of order unity and hence the dou
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integral has valueO(12x2). Since the numerator of th
prefactor is proportional toP(1)(s), we conclude that

e5O~A12x2!5O~A2gD r !, ~3.32!

which confirms that changes of the level are increasingly r
as D r→0. On average the number of level changes
N(sP(1)(s)e5O(NA2gD r).

Now consider how the entropy changes if we double
number of nodes by inserting a new node between each
isting pair of nodes. If the signal at the nodes on either s
of the new one has the same digitized values, then the new
node almost certainly has the same value~the probability is
12e8, wheree8!e). If the new node is inserted betwee
two nodes where the level changes froms to s11, then it
will definitely have one of these values, each with probab
ity 1/2. In other words, the additional uncertainty that aris
due to doubling the number of nodes and halving their sp
ing only depends upon the number of changes of level
each contributes just ln2,

S2N2SN5O~NA2gD r ln2!. ~3.33!

Since in this particular limitD r}1/N, we conclude that

S~Ds ,D r !;O~N1/2lnN!,

N→`, D r→0, ND r ,Ds fixed. ~3.34!

The reason that we cannot give the numerical value of
constant prefactor is that we did not explicitly evaluate
double integral above. In addition we neglectede8, the cal-
culation of which would involve the correlation function fo
three consecutive sites. Nevertheless, we have obtained
functional form of the entropy and in this continuum sa
pling limit we conclude that the entropy per node goes
zero. This is because the additional sites provide little n
information. The results for the entropy in the various co
tinuum limits are summarized in Table III.

4. Binary digitization

The last continuum limit above (N→`, ND r , Ds fixed!
can be explicitly confirmed for the binary leveled wave w
exponential covariance function. Using an asymptotic exp
sion for smallgD r , we have

arcsinK~D r !5arcsin@exp~2gD r !#;arcsin@12gD r #

;
p

2
2A2gD r1O~gD r !. ~3.35!

TABLE III. Continuum limits of the entropy of the exponen
tially covariant continuous signal.

Limit Fixed S(Ds ,D r)

L→` Ds , D r , N S→ const
Ds→0, L→` LDs , D r , N S;NlnL
Ds→0, D r→0 Ds

2/D r , L, N S;N@11 ln8pgDr /Ds
2#/2

D r→0 Ds!A2, L, N S;1/21 lnA2p/Ds

D r→0, N→` ND r , Ds , L S;aN1/2lnN
re
s

e
x-
e

-
s
c-
d

e
e

the
-
o
w
-

n-

To linear order in y[A2gD r /p, the neighbor pair-
correlation function is

G~2!~s,t!;11st22sty ~3.36!

and the neighbor triplet-correlation function is

G~3!~s,t,l!;11st1tl1ls22y@st1tl1lsA2#.
~3.37!

Keeping only the first three terms, the Markov entropy e
pansion is

S/N52(
s

r~s!lnr~s!2(
s,t

r~s!r~t!G~2!~s,t!

3 lnG~2!~s,t!2 (
s,t,l

r~s!r~t!r~l!

3G~3!~s,t,l!ln
G~3!~s,t,l!

G~2!~s,t!G~2!~t,l!

5 ln21
1

4(s,t
G~2!~s,t!lnG~2!~s,t!

2
1

8 (
s,t,l

G~3!~s,t,l!lnG~3!~s,t,l!. ~3.38!

Expanding the pair term to linear order we obtain

s2 /N;
2

4
@~222y!ln~222y!12yln2y#; ln21ylny2y.

~3.39!

Similarly, the triplet term becomes

s3 /N;
22

8
~422y@21A2# !ln~422y@21A2# !

14A2yln2A2y1~4y22A2y!ln~4y22A2y!

;22ln21
21A2

2
y~112ln2!2A2yln2A2

2
22A2

2
yln2~22A2!2

21A2

2
ylny. ~3.40!

Accordingly,

S~Ds ,D r !;N@12 lny1A2ln22~A221!ln~22A2!#
y

A2

;2NAgD r@alngD r2b#1O~gD r !, gD r→0.

~3.41!

The neglected higher-order terms in the Markovian entro
expansion contribute the numerical value of the constana
andb. We note that if the total sampling time is fixed, the
D r}N21 and the entropy of the signal goes likeS
;N1/2lnN, N→`, which agrees with the analysis give
above for a multilevel signal. That the entropy per sampl
node should go to zero is quite reasonable since we
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increasingly predict the state of the next sample the clos
is to the present measurement.

C. Example: Markovian digital correlations

The main virtue of the exponentially covariant model th
was solved above was that the correlation densities w
Markovian, which meant that it was possible to obtain e
plicit analytic results for the approximate entropyS̃. The
drawback was that this Markovian character was not p
served by the digitization process, and hence the exact
tropy could only be evaluated in certain continuum limi
namely, Ds→0. Hence, in the binary digitized signal w
could not obtain an explicit expression for the exact entro
because the Markov expansion does not terminate, as ca
seen from the fact thats3Þ0. The digitization destroys the
Markov character of the original continuous signal, as can
seen already at the three-site level. Recall that the p
correlation function is

g~2!~s1 ,s2 ;r ![` ~2!~s1 ,s2 ;r !/r~s1!r~s2!

511s1s2

2

p
arcsinK~r !, ~3.42!

wheres i561, and the triplet correlation function is

g~3!~s1 ,s2 ,s3 ;r 12,r 23,r 31!

511
2

p
@s1s2arcsinK~r 12!

1s2s3arcsinK~r 23!1s3s1arcsinK~r 31!#.

~3.43!

Evidently this can only be expressed as a Markov supe
sition for consecutive equally spaced sites if the covaria
function obeys certain properties, namely,

@arcsinK~D r !#
25

p

2
arcsinK~2D r !. ~3.44!

The expression holds to first order for exponential cova
ance asg→0 ~highly correlated limit! and also for a Gauss
ian covariance function to second order in the same lim
Even if this expression is satisfied, there is no guarantee
Markovian correlations will occur forn.3.

Binary digitization

Rather than digitizing a known continuous signal, in th
section we seek the digitized covariance function that w
give a Markovian digital signal. For a binary digitized sign
s i561, a Gaussian probability for consecutive sites in M
kov form is

P~n!~sn!5AnexpFz(
i 51

n21

s is i 11G . ~3.45!

No pure quadratic terms are included here becauses i
251 for

all configurations. It is evident that this is just the on
it
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dimensional Ising model with nearest-neighbor coupling
rameter2zkBT. The normalization constant follows from
the reduction formula

P~n21!~sn21!5 (
sn561

P~n!~sn!

5AnexpFz(
i 51

n22

s is i 11G (
sn561

ezsn21sn

5
An

An21
P~n21!~sn21!2 coshz. ~3.46!

HenceAn5A1A12n, whereA52 coshz, and

A15P~1!~s!51/2. ~3.47!

By construction, the consecutive site correlation function h
Markovian factorization

G~n!~sn![P~n!~sn!/A1
n5 )

i 51

n21

G~2!~s i ,s i 11!. ~3.48!

What is the digital covariance function that corresponds
the Markovian probability distribution? We have

K~nD r ![^s1sn&5 (
s1561

••• (
sn561

s1snP~n!~sn!

5A21 (
s1561

••• (
sn21561

3P~n21!~sn21!s1 (
sn561

snezsnsn21. ~3.49!

Now if sn21511 the final sum is 2 sinhz and if sn21
521 the final sum is22 sinhz, which gives

^s1sn&5 tanhz (
s1561

••• (
sn21561

P~n21!~sn21!s1sn21

5@ tanhz#^s1sn21&5@ tanhz#n21. ~3.50!

Hence an exponential digital covariance functionK(nD r)
5exp@2gDrunu# will give a Markovian consecutive site cor
relation function for a binary digitized signal, where the d
cay length is related to the Markovian decay parameterz by

e2gDr5 tanhz. ~3.51!

The entropy is

S52 (
s1561

••• (
sN561

P~N!~sN!lnP~N!~sN!

52N (
s561

P~1!~s!lnP~1!~s!

2~N21! (
s1561

(
s2561

P~2!~s1 ,s2!lnG~2!~s1 ,s2!
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5Nln22N (
s1561

(
s2561

1

2A
ezs1s2ln

4

2A
ezs1s2

5Nln22Nln
2

A
2Nẑ s1s2&5Nln@2 coshz#2Nz tanhz.

~3.52!

Note that in the continuum limitgD r→0, z→2 lnAgD r
→`. In this limit

S/N;zgD r52
gD r

2
lngD r , ~3.53!

or S;N1/2lnN, N}1/D r . This agrees with the limits found a
the ends of Secs. III B 3 and III B 4, with the constant pr
actor being obtained explicitly in this example. Simil
analysis could be carried out beyond the binary level
more general models in which the digital correlations
Markovian~e.g., the Potts and the related spin lattice mod
of statistical mechanics!.

CONCLUSION

We have addressed two main issues in this paper:
value of the entropy of continuous signals and the use
expansions for the information entropy. For a continuous s
nal we pointed out that sampling and digitization are fun
mentally intertwined with the measurement process, whic
consistent with the essential dependence of the informa
entropy on discrete probabilities. The nuance of our anal
was to distinguish between, on the one hand, the form
exact entropy sum that uses the discrete probabilities
sampled, digitized signal and, on the other hand, the appr
mation that sets the probability simply proportional to t
probability density and approximates the entropy as an i
gral of the latter. Although the latter procedure genera
yields to analytic evaluation and is increasingly accurate
the widths of the digitization levels are decreased, it mus
stressed that it is an approximation to the true entropy of
signal. In both cases the information entropy is a function
the sampling and the digitization and it is not possible
speak ofthe information content of a continuous signal in
dependent of the value of these. The analysis of the c
tinuum limit ~infinite sampling and digitization! was carried
out for the exponentially covariant Gaussian random sig
but the results are likely qualitatively applicable in gener
f
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By expanding the many-site correlation functions as
product of lower-order functions and a correction factor,
obtained formally exact expansions for the information e
tropy. When we set the remainders beyond a certain orde
unity we obtained a superposition approximation for t
higher-order correlation functions, which in turn truncat
the expansion for the entropy at the same order. We explo
two superposition approximations: a generalization of
Kirkwood superposition approximation that is common
liquid-state statistical mechanics and a Markov superposi
that is ideally suited for one-dimensional signals and ti
series. We compared with Monte Carlo simulations of
binary-leveled correlated random signal, using exponen
and Gaussian covariance, and we showed that the Ma
approximation was superior and only two or three terms
the entropy expansion sufficed for accurate results over
whole regime from low to highly correlated signals. Th
Markov approximation will work well for a broad class o
signals, including periodic or quasiperiodic ones, except p
sibly in the case of long-period, highly correlated signals

The success of the Markov approximation is likely due
large part to the one-dimensional nature of the signals
we examined here since it is formulated to take full adva
tage of the order inherent in this particular geometry. In co
sidering higher-dimensional problems, such as image p
cessing or tomography, it is possible in principle to tre
them as a one-dimensional problem resulting from se
sampling and the Markov expansion could simply be a
plied. Such an approach is unlikely to yield good resu
because the mapping to one dimension induces long-ra
correlations with period equal to the length of the scan l
and it would be inaccurate to apply the superposition
proximation to correlations of lower order than this. We co
clude that the generalized Kirkwood superposition expans
will have an advantage for higher-dimensional system
However, as we pointed out in the text, the generalized K
wood superposition approximation fails for highly correlat
systems because it overcounts the correlations. What we
quire is a Markov-type approximation that generalizes
notion of order to higher dimensions. For example, one co
approximate the three-site correlation function as the prod
of the two most highly correlated pair functions, which
practice means the two closest pairs of sites, and analogo
for the higher-order correlation functions. The utility of th
or other approximations in higher dimensions remain to
explored.
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